CEMENT-BASED MATERIALS IN CONTACT WITH WATER – REACTIVE TRANSPORT DRIVEN BY SURFACE PROCESSES –

M. Schwotzer¹, T. Scherer², A. Gerdes^{1,3} ¹ Forschungszentrum Karlsruhe, ITC-WGT ² Forschungszentrum Karlsruhe, INT ³ University of Applied Sciences-Karlsruhe

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Outline

- Deterioration of cement based materials in tap water storage
- Experimental investigation of reaction mechanims
 - Results
 - Model of the reaction mechanism
 - Validation on case studies
- Conclusions

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Observations in tap water reservoirs

Deterioration of cement-based materials during service life in contact with hard tap water (in carbonic acid equilibra)

Appearance:

- brown spots
- strictly local
- sometimes arranged in regular patterns

Mechanical properties: loss of strength

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

in der Helmholtz-Gemeinschaft

Observations in tap water reservoirs

Chemistry:

- discharge of Ca(OH)₂
- "intrusion" of CaCO₃
- degradation of CSH

Kinetics:

Sometimes 6 months after application in permanent ",contact" with hard tap water: lateral- and depth-expansion of the damage

- **Electrical fields**?
- Microbiology?
- Acid cleaning agents ?
- Hydraulic changes during tap water reservoir use ?

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Open questions...

Reactive transport: Transport:

- Diffusion **Chemical reactions:**
- dissolution
- precipitation

Why does the "damage" occur with cement-based materials in permanent contact with (hard) tap water?

What about a protection against leaching by CaCO₃-layers?

Why do we observe such significant local differences in the velocity of reactive transport?

KIT - die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

pН

8

Focus	Experiment	Methods
Chemical reactions		
Material/water Interface	 Exposition of (fresh cut) cement paste surfaces 	XRD, ESEM-EDX, FIB-ESB
Transport processes		
Material/water Interface	 Exposition cement paste samples 	TG, MIP, ESEM-EDX
Material properties	 Acclelerated transport by electrical fields – influence of the pore structure on reactive transport processes 	TG, XRF MIP
Material properties	 Exposition experiments with commercial available mortars 	ESEM, TG
Validation by case studies		
	 Characterisation of chemistry, mineralogy and structural properties (e.g. porosity and pore size distrib.) in case studies 	XRD, TG, ESEM, FIB MIP

Cement-based materials in tap water reservoirs

Construction phase:

- high humidity (~100%)
- low temperature (~10°C)
- → condensate formation can occur

Utilization:

- permanent in contact with tap water
- filling and emptying

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Experimental setup

Experimental setup to characterize the cement paste/ water interaction, based on practical frame conditions

- Fresh cut slices (1 mm) of white cement paste (w/c=0,4)
- Temperature = 11°C

Different types of exposition: Water

- demineralized water
- hard drinking water

Basic conditions

- continuous water exchange (V=25 L)
- stirred (V=0,5 L), open system

What happens at the material/water interface?

Focused Ion Beam cuts

Contact with hard tap water:

- development of a covering CaCO₃-layer
- no significant impact on pore structure and chemical composition

Contact with demineralized water:

- No dense covering CaCO₃-crystallization
- Chemical attack on the cement paste
 - → leaching
 - \rightarrow enlargement of the pore structure

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Calcite and portlandite content vs. time

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Porosity and pore size distribution

Hard tap water:

no significant change in porosity and pore size distribution **Demineralized water:** Increase of porosity and changes in pore size distribution

Increase in the smallest pore volumes

indicates that the paste is changing in ways other than just being destroyed, which would tend to decrease the surface area /fine structure. (Thomas et al., 2004)

THOMAS J. J., CHEN J. J., ALLEN A. J., JENNINGS H. M. (2004): Effects of the decalcification on the microstructure and surface area of cement and tricalcium silicate pastes, Cem. Concr. Res., **34**, 2297-2307

Surface processes in hard tap water

 \rightarrow Cont. water exchange (25 L reservoir), tap Water: **HCO**₃⁻ available 3 days 10 days

und Universität Karlsruhe (TH)

Reaction with demineralized water

3 days

Demineralized water:

- Ca-leaching from the CSH-gel is associated with a decrease of volume
- "Decalcification shrinkage" (Chen et al., 2006) leads to the formation of micro-cracks in the surface zone of the material
- In the stirred reactor: $CaCO_3$ overgrows the "leaching" features

CHEN J. J., THOMAS J. J., JENNINGS H. M. (2006): Decalcification shrinkage of cement paste, Cem. Concr. Res., 36, 801-809

KIT - die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Reaction with demineralized water

→ Cont. water exch. (25 L reservoir), demineralized Water: low CO₂ availability

14 M. Schwotzer, T. Scherer, A. Gerdes

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

GEMEINGCHAFT

Step 1: Initial damage - material-condensate interaction

Local reaction under a condensate water drop:

In this case, the $CaCO_3$ -layer has no efficient function as barrier against transport processes!

WPC paste w/c=0.4, 10 days stirred in demineralized water (0.5 L reactor)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Step 2: further reaction in contact with hard tap water

use of the tap water reservoir

Consequence: lateral- and depthexpansion of the damaged areas

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Summary of the reaction mechanism

(1) Inital damage by reaction with condensate

- solution of CO₂ of in the condensate
- Surface crystallisation triggers further reactive transport
- Structural changes support the progression of the reaction in deeper areas

(2) Progress of the damage during contact with hard tap water

- Crystallisation front progresses in the depth
- "Decalcification shrinkage" promotes the lateral developement of the damage

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Case Study: Interface material/water

What happens in the surface near µ-meters?

Focused Ion Beam preparation of a deteriorated area (white) and an intact area (gray)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Case study: Interface material/water

EDX-analysis on FIB-cuts in the surface of a damaged and a intact mortar surface

• Structure of CaCO₃ layer Irregular in the damaged area

• Ca/Si ratio

In the **intact** area, the $CaCO_3$ layer is only few µm thick In **damaged** area, the formation of $CaCO_3$ has reached deeper regions of the material

20 M. Schwotzer, T. Scherer, A. Gerdes

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Conclusions

- > The formation of a CaCO₃-layer can play a...
 - protective role \rightarrow fast crystallisation; Ca²⁺ and HCO₃⁻ from the water
 - destructive role → crystal growth affects the pore water chemistry
 If Ca²⁺ is supplied by the pore solution, CaCO₃ formation triggers a
 further chemical degradation of the solid phases of the cement paste
- Leaching but also CaCO₃ formation causes microstructural changes in the CSH also by "decalcifiction shrinkage"
- An initial leaching can be crucial for the long-term behaviour of cement based materials in permanent contact with water (also if the water is considered to be "not agressive")
 - ➔ favorable conditions for CaCO₃ precipitation are shiftet in deeper areas of the material
 - → subsequent ingress of HCO_3^- and Ca^{2+} can occur only by diffusion
 - → slow process formation of a dense coating unlikely
- The sturctural properties of a CaCO₃ layer are determined by frame conditions (e.g. watercomposition, temperature) affecting the efficency as a diffusion barrier

Thank you for your kind attention

~ 20 µm

22 M. Schwotzer, T. Scherer, A. Gerdes

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

1. Phenolphthaleinlösung wurde auf die Oberfläche aufgebracht: Keine signifikante Farbreaktion Calciumcarbonatschicht unterbindet den Kontakt der Indikatorlösung mit der alkalischen Porenlösung des Zementsteins.

2. Anritzen der Oberfläche mit einer Nadel: Im Bereich der Ritzung tritt violette Verfärbung auf Nur in Bereichen, die mit einer Nadel angeritzt wurden, konnte die Indikatorlösung in Kontakt mit der alkalischen Porenlösung (pH ~12) des unter der Calciumcarbonatschicht liegenden Zementsteins kommen.

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

XRD of the sample surfaces

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

